How to Cite:

Czarnecka, P. (2020). The multi-tenant cloud computing architecture allows the service
consumers to share the computing resources. Tennessee Research International of Social
Sciences, 2(1), 1-24. Retrieved from http://triss.org/index.php/journal/article/view/17

The multi-tenant cloud computing architecture
allows the service consumers to share the
computing resources

Paulina Czarnecka
Nicolaus Copernicus University, Torun, Poland

Abstract---The log integrity is proved by log chains which are created
in the implemented system and by the potential electronic evidence of
past logs which are posted by the cloud service provider. The proposed
system aids in performing the reasonable verifications that the cloud
service provider or the forensic investigator is not tampering the logs.
The novelty of the research conducted in this paper is a technique
which applies the cuckoo filter, to the forensic logs which is
supportive in proving the integrity of the evidences at a faster pace in
comparison to the other filters. Gathering and scrutinizing the
different types of logs are the vital steps in the forensic domain. Logs
are commonly gathered by the cloud service providers or by some
third party layers governed by the cloud service providers. Security of
the logs is a crucial issue as the logs can be tampered accidentally or
intentionally by an employee in the cloud service provider’s
organization or by the forensic investigator, thus maligning the
evidence in case a cyber-crime is committed through the cloud service
provider’s infrastructure. The malicious attacker can also conspire
with the cloud service provider or the forensic investigator to erase or
malign the logs that are generated for one’s own criminal activity. To
address such issues, a method is recommended which verifies the
tampering of the virtual instance logs; Verification process confirms
that the confidentiality and integrity of the logs remains intact.

Keywords---Multi-tenant, Confidentiality, Forensic, Evidences,
Scrutinize.

Introduction

Many services are offered by the Cloud Service Providers (CSPs) to millions of its

service consumers referred to as tenants or clients or users. The multi-tenant
cloud computing architecture allows the service consumers to share the

Tennessee research international of social sciences © 2020.

ISSN: 2766-7464 (Online)

Publisher: Smoky Mountain Publishing

Manuscript submitted: 09 March 2020, Manuscript revised: 18 April 2020, Accepted for publication: 27 May 2020
1

http://triss.org/index.php/journal/article/view/17
https://portal.issn.org/resource/ISSN/2766-7464

2

computing resources. The different services offered by the CSPs are Infrastructure
as a Service ([aaS), Platform as a Service (PaaS) and Software as a Service (SaaS)
as listed by National Institute of Standards and Technology U.S Department of
Commerce (NIST) [1]. The various deployment models of cloud are private, public,
community and hybrid cloud. Cloud environment has been adopted by many
people as the business provided by it, is very promising in many countries. The
latest research report states that the global cloud computing market having
coverage of products, technologies and services is anticipated to cross $1 Trillion
by 2024. India's booming cloud market is set to be worth $4.1 Billion by
2020[3].Cloud has many essential characteristics for the service consumers like
on-demand self-service, broad network access, resource pooling, rapid elasticity
or expansion, and measured service.

The contributions presented in this paper include:

1) A continuous forensics log system is introduced to monitor and collect the
log which actually contains the evidences created by the users of this
system. The proposed system preserves the confidentiality of the system
users. Users of the system can be addressed as the cloud service clients or
tenants.

2) The proposed system introduces the collection of Potential Electronic
Evidence for Past Logs (PEEPL) which cannot be altered by any of the
probable malicious entities like CSP or any employee in the organization or
the forensics investigator.

3) The proposed system proves the confidentially (i.e. concealment) and the
integrity of the evidences gathered using best key generation, encryption
and hashing algorithm as per the need of the law of most of the countries.

4) The proposed system is constructed on upper layers of “Open Source cloud
computing platform — OpenStack” where the logs are taken on regular basis
and stored, which aids in solving the issues of volatile logs of virtual
instances.

5) The modules of the system are built using python scripts which can be
integrated later as a part of OS or as a layer of service in the future.
Probabilistic data structures are employed like cuckoo filters and bloom
filters which are supportive in proving the integrity of the logs which are
evidences collected in the past, at a faster pace .The comparison of both the
filters is provided.

This paper is organized as below: Section 2 discusses about the digital and cloud
forensic process model, Section 3 discusses about related work, background and
challenges. Section 4 gives a brief introduction on probabilistic data structures.
Section 5 discusses about the threat model terminologies used in this paper.
Section 6 discusses about proposed work and prototype implementation. Section
7 explains about the security analysis. Section 8 explains about the results
observed. Section 9 includes discussion and section 10 finally concludes this
research paper.

Digital and Cloud Forensic Process Model
Digital forensics is the procedure of preserving, collecting, confirming, identifying,

analyzing, recording, and presenting the crime related evidence. Digital forensics
is an applied science to recognize an incident, gathering, investigation, and

3

examination of evidence data as defined by NIST [18]. The Digital Forensic Process
Model (DFPM) consists of four methods including gathering, examination, and
analysis and reporting. The procedures here are expressed as a sequential
progressive logic for better elucidations. Roussev et al, Kohn et al and Ahmed
Nour Moussa et al have adopted the sequential logic process to capture and
visualize the flow processes in the digital forensics world [4, 14 - 15]. The
sequential progressive logic process notations employed in this paper is described
as follows:

Digital Forensic Process Model = {Start process 2 Next process 2 then -2 End
process}

The processes defined by NIST are collection, examination, analysis and reporting.
The investigating process involved transmutes the data on the devices into
evidences for internal use of the organization or for the usage of the law
enforcement [1]. Collection of data happens in the initial stage from the devices
and then this data is transmuted in a form useful for the forensic process. Data
collection process gathers all possible sources of data after identifying them. The
analysis stage is very significant as it transmutes the data into information which
then leads to the reporting stage where this information is converted to evidence.

DFPM = {Data Collection - Data Examination 2 Analysis 2 Reporting)}
Where

Data collection = {Identifying Possible Sources of Data - Acquiring the Data >
Incident Response Considerations}.

Cloud forensics is defined as the science of conserving all potential evidences,
safeguarding the concealment and integrity of the information, identification,
collection, organization, presentation, and verification of evidence data to
determine the events about an incident in the concerned cloud environment[1].
The cloud storage forensics process model (CSFPM) was presented by Darren
Quick et al based on the intelligence analysis cycle and DFPM model [16]. It
includes procedures like commence (scope), preparation and response,
identification and gathering, conservation, examination, presentation, feedback
and others. The CSFPM is related as:

CSFPM = {Commence 2 Preparation and Response 2 Identification and Collection
2 Preservation, Analysis, Presentation 2 Feedback -2 Complete}

The cloud network forensics process model (CNFPM) defined by Gebhardt T. et al
has five horizontal processes data gathering, separation, accumulation,
examination and reporting that act together with a management process
represented by the symbol €< - below [16]. The process models employed here
are referenced from DFPM model of NIST defined earlier in this section. The
researchers have wused OpenNebula-based ([aaS) environment for the
implementation of the proposed system. They remotely analyze the Network
Traffic moving in and out of the (IaaS) environment. All these process are running

4

inside the cloud environment and the clients of the system can get their forensic
data on request to the respective role.

CNFPM = {{Data Collection 2 Separation - Aggregation 2 Analysis - Reporting}}
< > Management;}

The Open Cloud Forensic Process Model (OCFPM) suggested by the researcher
Shams et al [17] is incessantly supported by the CSPs. The model is from the
DFPM model and defines six processes such as preservation, identification
(incident and evidence), collection, organization (examination and analysis),
conservation and verification. Sub processes are defined by both identification
and organization processes This OCFPM is specified as:

OCFPM = {Preservation = Identification > Collection - Organization -
Presentation 2 Verification}

Where

Identification = {Incident - Evidence}
Organization = {Examination 2 Analysis}

This section describes the various digital and cloud forensic models. The digital
evidence plays a major role in the court of law along with the processes followed
for the digital investigation process. These models though are very important and
are followed very strongly by well-known researchers in this domain, but they do
not include some important phases like preservation and verification stages
except OCFPM. These models have been updated and are improvised by different
researchers. The preservation and verification stages are important for the
implemented system in this paper as the important entities of the system do the
major processing in these stages. The research work followed in this paper is
based on the processes of OCFPM.

Related Work, Background and Challenges

A solution in the cloud forensics domain has been proposed by many researchers
and has been observed in the last few recent years. This section focuses on a few
researchers who have provided a solution executed practically in cloud
environments and a few who have just discussed the fundamental concepts.
Ahmed Nour Moussa et al have proposed a cloud-forensic-as-a-service a live cloud
forensic process model, a process which is bilaterally agreed evidence collection
where customers can employ it as a service to gather criminological data from
cloud. The CSP has the major control over the critical evidences, but the
researcher has not addressed the issues of the CSP being dishonest, and the
related measures [4]. Noélle Rakotondravony et al have classified attacks in (IaaS)
cloud that can be scrutinized by employing Virtual Machine Introspection (VMI) -
based mechanisms. The authors say that VMI is proved to be an operative tool for
malware detection and analysis in cloud computing environment. They focused on
the attacks on virtual machines deployed in an (IaaS) cloud. The authors have
addressed the attacks from the CSP’s side, but have failed to address the issues
of volatile logs. The authors have just classified the attacks and discussed about

5

its financial impact [5]. Adam J Brown et al suggested of constructing a balancing
test for competing considerations of a forensic investigator acquiring information.
The authors claim that maintaining privacy of data on cloud is a complex task.
The authors have focused on pre-processing, acquisition and presentation phases
and have tried to balance the user privacy and data integrity. The authors also
claim that it’s a difficult task to gather evidences in criminal cases and also
difficult to meet the standards of United States Federal [6]. Nurul et al discussed
about integrated cloud event behavior and forensic by design model. The authors
have deployed the cloud storage applications in experiments in Drop box, Google
Drive, and One Drive. They have collected and analyzed the residual data from
cloud storage applications [7]. The experiments done by the authors were divided
in two phases simulation phase followed by the packet capturing phase. The
authors also have constructed the event scenarios with metadata captured from
the past events. The authors have failed to address the issues of data integrity
and accidental changes. M Edington Alex et al suggested about a consolidated
forensic server and a forensic level called forensic monitoring plane (FMP) external
to the specified infrastructure, after procurement of consent from the
International Telecommunication Union (ITU). Thus, the investigators need not
rely on the CSP for gathering facts as the said entities can be dishonest and thus
can delay the process [9].Roberto Battistoni et al designed a CURE architecture
that can detect timeline of events alterations to aid a forensic investigation
process. A public cloud is used to deploy and test a CURE architecture. It pledges
on the validity and trustworthiness of the investigation processes. The authors
have not focused on the scaling factor and the integrity verification on distributed
timeline [12]. Vassil Roussev formulated a forensic triage as a real-time
computation problem with specific technical requirements, and used these
requirements to evaluate the suitability of different forensic methods for triage
purposes. The authors debated on the issues of forensic processes to be treated
as soft real time problem [13]. Michael Kohn et al proposed a standardized digital
forensic process model to assists the investigators in following a uniform
approach in digital forensic investigations. The uniform approach is a must and a
very significant step in investigations. The authors describe all the necessary
steps for DFPM and how it needs to be presented [14]. Darren Quick et al an
author of a book suggested about cloud forensic storage. The authors have
discussed many case studies for analyzing the different cloud storage devices [15].
Gebhardt T. et al presented a general model for network forensics in the cloud
and describes an architecture that reports a few issues in the domain of cloud
computing. The authors have provided a remote access to the network forensics
to the clients, ensures clear distinction between different user spaces in a multi-
tenant environment. The system developed also shuns the cost of transferring the
network data which is required for the Investigator by developing an internal
service in cloud architecture. The authors validate the said architecture with a
model for implementation based on the OpenNebula platform and the Xplico
analysis tool [16]. Aarafat Aldhagm discusses about the conceptual examination
process model and an outline on database forensic investigation (DBFI) knowledge
possessed algorithms, process models, procedures and artifacts forensics, which
are very much applicable for DBFI users, practitioners and researchers in
researching an imminent and undeveloped discipline [18]. Qiujin Zhang et al have
built a model, an index system for confidentiality assessment for the cloud and
also claim that no such model is built before. The authors have evaluated the

6

risks using the Information Entropy theory and Fuzzy logic. The authors have
evaluated the privacy security risks in the cloud. The authors have also listed the
privacy security risk from the popular CSPs like Google, Microsoft, Apple etc. [32].
Zhao discussed about the architecture which is secure for cloud computing
alliance. The author has employed Game Theory and modelled the management of
reliable resources of the cloud [33].Shams et al have suggested an Open model for
Cloud Forensics which is termed as digital forensics [17]. Zawoad et al defined
OCFPM which focuses on preserving sufficient electronically stored information
(ESI) required to investigate cases involving clouds and ensuring the
trustworthiness of such ESI. The Researcher worked on a case study, which is
inspired from an actual civil lawsuit [21]. Zawoad et al also proposed a new
accumulator scheme Bloom-Tree, which performs better than the other two
accumulators in terms of time and space requirement. The authors claim that the
false positive rate for the operations is also reduced in the system modeled by
them [21-23]. The Google cloud uses the stack driver logging agent to log the
significant elements, but how the security of the logs is handled and especially
the forensic part of it is not available [31]. The logs are stored for 30 days, but the
integrity issues remain transparent. Most of the commercial clouds keep such
issues transparent and the servers are situated in different countries with
different laws. All the CSPs may not obey the laws unless it’s very legally and
strictly followed in their respective country. The domain of cloud forensics is still
a little immature and unexplored and has many issues due to which many
criminals are getting away after performing the crimes. So the research focus of
this paper is the design and implementation of a system which overcomes a few
issues like volatile logs, safeguarding the privacy and confidentiality and proving
the integrity of the logs [36].

Probabilistic Data Structures

When dealing with large amount of data, many of the classic data structures used
to store, read, and update data become cumbersome and impractical to employ.
In certain cases, it is better to use a different class of data structures and
algorithms which employ randomness to mitigate some of these problems. Such
data structures are called Probabilistic Data Structures (PDS). PDS are extremely
useful for big data and use hash functions to randomize and compactly represent
a set of items. These data structures use very less memory and have a constant
query time. Some examples for PDS are bloom filter, cuckoo filter, skip lists,
hyperloglog, count-min sketch etc.

Bloom filter is a “space-efficient probabilistic data structure that is used to test
whether an element is a member of a set’. For instance, testing the presence of
login names is a set membership query, where the set is the list of all registered
username and can be done faster as compared to the search operations in the
database. But the issues with PDS despite of being efficient is that they are
probabilistic in nature which means the results of such data structures can be
false positive which portrays that said item is previously present which actually
may not be. The details of such results or the test conditions for the PDS are
illustrated in figure 1. There are different types of bloom filter Standard Bloom
filter (SBF), Counting Bloom Filter (CBF), multi-level bloom filter etc. SBF allows
adding new elements to the filter and is characterized by a perfect true positive

7

rate (i.e. 1), but nonzero false positive rate. The false positive rate depends on the
count of elements to be stored in the filter and on the filter’'s parameters,
including the number of hash functions and the size of the filter. However, SBF
lacks the functionality of deleting an element. Therefore, a CBF [10], providing the
delete operation, is commonly used. The advance knowledge of the size of the CBF
and the count of the elements to be stored will aid in optimizing the number of
hash functions minimizing the false positive rate.

Cuckoo filter stores the fingerprints of a set of items which resolve collision
employing a cuckoo hash table. Cuckoo filter is also termed as a compact
alternative of a cuckoo hash table storing merely a few bits which are part of the
item by employing a hash function for every item to be inserted. The filter
efficiently occupies space even when it is densely filled, specifically when close to
100 % [19] [21]. A fingerprint as a hash function &: U L {0, 1}f which maps each
element from the universe to its fingerprint, a short identifying string on f bits,
such that if x = y then @ (x) = @ (y) and if x! = y, then d(x)! = & (y) with high
probability (! = representing not equal to sign). The pseudo code for the insert and
the lookup procedure is discussed later in this section. Bin Fan Et al have proved
that “Cuckoo filters are practically better than the bloom filters” [8]. False positive
results may be likely, but false negatives may never come up, to be precise, a
query can return results which are “possibly in set" or "definitely not in set"[8].
Items or the logs may be inserted to the set. As the number of elements are
inserted to the set, the likelihood of false positives increases.

Mareli, B. Twala et al have contributed by investigation of dynamically increasing
switching parameter in Cuckoo Search algorithms performance [10]. They have
optimized by employing an adaptive cuckoo search algorithm. Prashant Pandey et
al have suggested a general-purpose Approximate membership query data
structure which is minor and speedy and has good locality of reference and
supports various operations like merging, counting (even on skewed data sets),
and deleting and supports highly concurrent access [11]. The author claims that
Counting Quotient Filter (CQF) performs good lookups even if the system is full
up to 95%.

Shams Z. et al have used bloom filter for the implementation and verification of
proof of past logs [23]. Bloom filters (BFs) have limitations which are overcome by
the cuckoo filter. Cuckoo filters have the major advantages like roping in dynamic
insertion and deletion of items. It affords higher lookup performance as compared
to traditional BFs, even when it’s literally jam-packed (e.g., 95% space exploited).
In numerous real-world applications space used by cuckoo filters is far more less
than the bloom filters with a very low false positive rate (<3%). A cuckoo filters
can be used for some of the few significant key operations like add/ insert, lookup
for an item which can return false positive result, delete an item etc. Probabilistic
filters are employed in a many of the applications where slow or costly operations
can be eluded prior to execution by a referring to a comparatively fast or cheap set
membership test. Some of them are: Database Query Optimization (DBQO) and
edge filtering. DBQO is applicable when data stored in a database can be inserted
into a probabilistic filter. First the filter can be queried and tested to check if the
data exists. If the results are successful then the expensive database operation

8

can be avoided. Edge filtering is useful in filtering queries for non-existent data
received at the edge. Filters do not include the original data like cache.

The Pseudo Code for the Insert Procedure for Cuckoo Filter Is Specified Below

Pseudo code for Insert procedure : Insert (LE)

1 F = Fingerprint(IDLE);

2 I = Hash (F);

3 J =1 Hash (F) ;

4 IF (Bucket (I) OR Bucket (J) has an empty entry THEN

5 Add F to this Bucket;

6 RETURN successful ;

7 K = Randomly select I or J ; ** Relocation of
existing element in the
cuckoo filter

8 FOR N =0 ; N < MaxKicks ; STEP 1 DO

9 Randomly select an element from Bucket (I) ;

10 SWAP F and the fingerprint stored at in the location

of the element

11 K=16@ Hash (F) ;

12 IF Bucket(l) has an empty entry THEN

13 Add F to this Bucket;

14 RETURN successful ;

15 | RETURN failure; **Hash Table is full of
fingerprints

The Pseudo Code for the Lookup Procedure for Cuckoo Filter Is Specified Below

Pseudo code for Lookup procedure : Lookup (LE)

1 F = Fingerprint(IDLE);

2 I = Hash (F);

3 J =16 Hash (F);

4 IF (Bucket (I) OR Bucket (J) has an entry for F THEN ** Check the presence
of the fingerprint of
LE

5 RETURN successful ;

6 | RETURN failure; ** if fingerprint not
present

The Insistent Database Log Entry (IDLE) used in the insert and the lookup
Procedure is referred in figure 5 which is inserted in the cuckoo filter created at
the top layer as specified in figure 4. The details are discussed in the section
6.Cuckoo filter stores only the hash values of the logs that are generated by the
system created and implemented in this paper and not the original values. So no
entity can access the orignal values once the logs are inserted to the cuckoo filter.
The pseudo code specified above is built on similar lines from the research paper
of Bin et al [8]. A more detailed description of test conditions for the PDS is
specified in figure 1. A true positive test result is the one which identifies the log if
it is present. A true negative test result is one which does not detect the log when
the log is absent. A false positive test result is one which detects the log even
when the log is absent. A false negative test result is one which does not notice
the log when the log is existing [27].

Conditions

Tests
Negative Positive

Present Absent

True Positive False Positive

False Negative True Negative

Figure 1: Description of the Different Test Conditions

Threat Model Terminologies

The Table 1 describes the significant terminologies used in the proposed system.
They are the different entities involved in the entire process of investigation. These
fundamental terminologies are inspired from Zawoad et al. [22]

Table 1: Fundamental Terminologies

Fundamental Description

Term

Log A log can be any of the OS logs , VI logs or the network
process log,

Potential The PEEPL has the evidence of logs to safeguard the integrity

Electronic of logs

Evidence of Past
Logs (PEEPL)

Hash Chain (HC)

HC preserves the consecutive ordering of logs to guard the
logs from regrouping or reorganizing.

CSp

A CSP is the proprietor of a public cloud infrastructure, when
used by the clients generates the PEEPL, which is publicly
available, and allows the processes to gather the logs.

Client

A client is a user. He is a customer to the CSP, who hires
services like renting VIs which are a part of the CSP’s
Infrastructure. A client can be mischievous or truthful.

Forensic
Investigator (FI)

The investigator is a proficient and skilful person in the
forensics domain who is allotted the responsibility of
gathering the required logs from clouds infrastructure in case
of some crime or mischievous episode.

10

Electronic An EEE is a representative from the agencies appointed by
Evidence the Central or State Government as per Indian Cyber Laws
Examiner (EEE) | (Section 79 A). He is like an authority whose responsibility is
to validate the accuracy of the logs using PEEPL and HC.
Intruder Intruder can be some mischievous person, including

employee of a CSP or even the investigator, who wants to
disclose clients’ actions from the PEEPL or from the stored
logs

Proposed Work and Prototype Implementation

A Forensics Braced Cloud (FBC) is designed in the system implemented in this
paper as shown in figure 2 which is based on the OCFPM discussed in Section 2.
The OCFPM has various stages like preservation, identification (incident and
evidence), collection, organization (examination and analysis), conservation and
verification. The conservation and verification stages are very significantly needed
to handle the issues related to volatile logs. The conservation stage has to be
online which is termed as insistent database which is continuously throwing data
to the Web server, the evidence publisher as referred in figure 2. Many
manipulating entities exist as discussed in the threat model Table 2. They can be
a threat to the logs when some crime is committed and thus want to modify the
logs. Karen Kent et al have suggested how to integrate forensics techniques into
incidence response as these are the guidelines from NIST [20].

FORENSIC BRACED CLOUD

Logs
gathering
process

Run VMs on
Clouds Generates Persistent Records

Represents evidence
in the form accepted
by the Court of Law

A ma

FORENSIC ;
sics AUTHORITY
INVESTIGATOR PR LA

Volatile Logs

Figure 2: Forensics Braced Cloud

11

Incident Examination

Identification Collection Organization Presentation Verification

Evidence Analysis

Figure 3: Cloud Forensics Process Flow

A client as specified in the threat model table 1 can use most of the cloud services
hosted by the CSP. These services when used generate logs. In the implemented
model of this paper the Virtual Instance (VI) logs are considered which is referred
to as VI in the prototype environment configuration referred in figure 4. A client
can hire the VIs for some time, commit some crime and close the VIs assuming
that he cannot be traced by anybody as the VIs are shut down. A few such cases
are stated in some countries like USA, India etc. as per the reports [34-36]. The
experts relate about legal evidence gathering issues, issues of not reporting about
the crimes, issues of honoring the warrants of arrest when cross-boundary
problems arise. Some countries like China and Russia will never honor the
warrants of arrests. Such matters can be handled through Interpol and
international talks which can lead to a consensus between the nations. The
implemented system stores these logs as a set of evidences which can be useful in
the court of law as per their requirement. A CSP cannot amend or delete any of
the logs generated because of the security provided by the system. If the CSP tries
to delete some logs or modify some logs, it can be easily identified by the
implemented system. FI can perform the analysis of the logs when a cybercrime is
committed using these VIS. The FI can present the set of evidences and prove its
integrity in the court of law. The cybercriminal can thus be prosecuted. The
prototype environment configuration is shown in figure 4.

12

Hash and Chain the Encrypted Logs and
publish the PEEPL (Potential Electronic Suenie C;‘::‘::dnl"'" ’;d. bty
Evidence for Past Logs) ogs toit

Secure the Captured Logs with Cryptographic Algorithm

LTI
------ 10.0.47.10

Virtual Instances

I Network Log Capture (Wireshark)

’\ Cloud Set up (Openstack Icehouse)

l Base Operaﬁng System (Ubuntu 14.4)
Figure 4: Prototype Environment Configuration

* LE = < SrclP: DstIP; Ts: SrcPort; Dst Port; Userld =; ** Log Entry
* ELE= { EPKA(DstIP; DstPort; Userld.Ts): SrcIP; } ** Encrypted using ECC Log entry

* HC ={ H(ELE:HCp, i)} ** Hash Chain
* IDLE =< ELE:HC > *# Insistent Database Log Entry

5’3 « SrcIP z o
= - DstlP 5 <
* ScrPort O
2 . DstPort 2 Z
= o = &
« Userid = o
« Mac- &
add

Figure 5: Encryption and Hash Chaining Process for the Logs Captured

Ubuntu 14.4 is used as the base OS in the system implemented here. VIs are
created using the OpenStack Icehouse referred to as VI with different IP addresses
allotted during creation as shown in figure 4. A VI is allotted “10.0.47.1” IP
addresses from the pool of IPs. Similarly other VIs is created in the similar

manner.

13

The users can hire and use these VIs and make request for URLs or the websites
as shown below:

"1963","2019-01-18
10:06:12.159773344","10.0.47.2","52.222.187.201","TCP","78","[TCP Dup ACK
1959#1] 55857 — 443 [ACK] Seq=1261 Ack=220916 Win=1444 Len=0
TSval=1149679

TSecr=1237403989 SLE=222364 SRE=223812The above log is a request that is
captured in the set up environment using Wireshark installed in the Node
Controller of the Openstack cloud which specifies that VI with IP “10.0.47.2” is
sending an HTTP request to “52.222.187.201” machine at “2019-01-18
10:06:12.159773344" time . The request-id is “1963” with TCP protocol log shown
above. The details of the user who is allotted VI “10.0.47.2” can be captured from
the “Nova” mysql database of Openstack. The logger module captures all these
elements as shown in figure 5. The RE module is a Regular Expression used to
extract the significant elements shown in figure 6. It’s a python module to parse
the significant elements.

| Wireshark | Logger | RE | Cryptes/ | PDS | PEEPL | Web
HC Publishing
(1) 2) 3) ‘) (5) (6) o)
Log Stores the Regular | Cryptograp = Encrypted IDLE
collection/ Logs expression hic and chained | signed using PEEPL
capturing in Python | procedure |elements are| private published on
process to extract | applied to added to | /public keys | the WEB
the the Log Cuckoo
significant | Elements to Filter or
elements for| encrypt Bloom
the Logs them and Filter
captured the hash (IDLE)
chain is
formed

Figure 6: Transformation from Log to PEEPL Published On Web through Pds

The implemented system uses a cryptographic algorithm ECC (Elliptic Curve
Cryptography) [28]. ECC Algorithm aids are creating quicker, smaller and more
efficient public and private keys. The keys generated are asymmetric in nature. As
per literature survey, a 256 bit ECC key is more efficient as compared to a 3072
bit RSA key. Such keys with minimum bits offer strong security and fast SSL
handshakes. Applying ECDSA (Elliptic curve digital signature algorithm) to the
system, the private key of the CSP can be employed to generate a signature of the
logs and the other key can be used by the FI for decrypting when needed to verify
the evidences. A hash of the log is computed using the cryptographic SHAS512
hash function, which supports in the integrity of the log chain referred to as Hash
Chaining (HC) in the table 1 and figure 5. The computed hash value can be used
to verify the integrity of copies of the original logs without providing any original
data. Hashing process is one way, not like encryption process in which decryption
is essential. The logs are signed by the CSP at the end of the day at a specified

14

time before the next day starts. The process of signing of logs and keeping the
backup logs can be made mandatory by the Cyber law.

The VI logs recorded in the implemented system would have the following
elements: source IP (SrcIP), destination IP (DstIP), time stamp (Ts) the time at
which these web sites were requested or accessed, source port (ScrPort),
destination port (DstPost). The User-id can be obtained from the Nova database
of the OpenStack. The log description has been shown in figure 5. Few items of
the logs are encrypted using the ECC algorithm as shown in figure 5 which is
referred earlier and are denoted as ELE. A HC as shown in figure 5 is formed
using the hashing algorithm which takes the ELE and HC of the previous record.
At the initial step, when the first log is taken the HC value can be set to some
assumed negative value as there will be no preceding log. A hash chain is formed
for all the accesses made by the different clients while using the services of the
CSP as shown in figure 5. These logs are stored in the insistent database and also
on the web server under control of some other CSP. Such multiple copies can be
stored with different CSP’s if required. The encrypted log plus the hash code of
the previous encrypted log gives a better security level for the logs. As encryption
is applied to the log elements in addition to the hash code, which assists in
providing the confidentiality and integrity. The PEEPL is signed by the CSP using
the secret key generated using ECDSA. The elements used for PEEPL as listed
below:

Peepl = {Idle, Tp, Signaturepv (Idle, Tp)}

IDLE is shown in figure 5; Tp is the time stamp which specifies the evidence
generated time. Signature (IDLE, Tp) is the signature on (IDLE, Tp) by the CSP by
employing the private keys. The other key is shared with the FI or the EEE and
only they can view the data and no one else, so the privacy and the authenticity is
maintained. Multiple copies are kept at various Web servers and the other CSPs if
required, forming a trust model among them. The FI when allocated the duty of
an analyst can check the hash value of the log using the key allotted in case a
crime is detected and the logs on the server belong to the CSP, who’s
Infrastructure was used to pursue the crime. If the hash code of the forensic log
in the backup copy is same with the one the CSP has, then it concludes that it’s
not compromised till date and the logs and the evidences are said to be authentic.
Also the CSP will be alert in such cases and as the backups are available, the CSP
cannot deny giving any data in raw form. Thus if a crime is committed by using
the hosted services by the client and then closes the VIs after committing the
crime , the CSP has the data of the past logs PEEPL even if the VMs are shut off
to hide the crime. The framework for such a system and its need is discussed and
implemented, but is not optimized [24 - 25]|. Now in the proposed system the
cuckoo filters and bloom filters are created on the top layer as shown in figure 4
which is explained in detail in the next section. The logs are inserted to the
cuckoo filter as soon as they are generated and chained as a part of the chaining
process. This is referred to as PDS in figure 5, then published on the web server
after the signing process is complete.

15
Security Analysis

The conspiracy model inspired from Zawoad et al [22] which is slightly altered for
the system implemented here as shown in Table 2 has mainly three persons the
CSP, user who is a client and the FI. CSP is represented as C if the CPS is
trustworthy and €-if the CSP is not trustworthy. CSP has the complete hold over
for the logs which are stored and which can act as evidence. Thus the CSP cannot
be trusted. FI is represented as F if the FI is trustworthy and F if the FI is not. As
FI can acquire logs and if the FI conspires with the CSP or the user, the FI can
manipulate the logs before showing it to the EEE or the Court. The user can also
conspire for manipulating the logs if the said user has committed some crime.
The represented as Y and U if the user is honest. Any step or person
manipulating the logs can be detected by the system designed here, which is
providing tamper proof evidence. The implemented system has to follow the basic
concealment and integrity properties which ensure security of the logs as
discussed below.

Basic Concealment and Integrity Property

The system designed ensures the safety of the logs in the persistent storage that
is the insistent database and also disallows any malicious actor from inserting or
creating fake PEEPLs. Also the system ensures that the FI is not manipulating the
logs. The logs generated by the system here should own the following concealment
(Con) and integrity (Int) properties:

Conl: An oppugner (attacker or malicious entity) will not be able to qualify for
the logs from the published PEEPLs.

Con2: A mischievous cloud employee will not be able to recover concealed
information from the stored logs.

Intl: A CSP will not be able to eliminate a log entry from the storage once the
PEEPL is published.

Int2: A CSP cannot alter or reorder the logs from its actual order of generation.
Int3: A CSP cannot insert a fake log after-the-fact.

Int4: A FI will not be able to conceal or remove a log entry at the time of
presenting logs to court. Int5: A FI will not be able to alter the chronological order
of a log entry at the time of presenting evidences to court.

Int6: A FI will not be able to provide the duplicitous

logs to the court. Int7: CSPs will not be able to deny

previously published PEEPLs.

Table 2 lists the different types of compromises possible and how the
compromises can be handling or defended using the essential security properties.
The concealment property Conl, Con2 holds true and is justified in the system
implemented because store the logs are not stored in the original form but the
hash of it. As the hash functions are one way (original data cannot be obtained)
and also the logs are encrypted, so no external attacker or any malicious
employee can recover any concealed information from the logs. The integrity
properties Intl, Int2, Int4 and IntS support non removal and sequential
disordering of the logs by the malicious CSP or dishonest FI. If any of the logs are

16

removed or replaced after the PEEPL is published, the hash chain process will
identify the difference in hash values. The hash values are also not found in the
cuckoo filter as it is trained in advance as soon as the logs were generated. The
cuckoo filters never give false negatives. This process flow is shown in figure 6.
The EEE and the FI can use this method as a verification process for validity of
PEEPL and can conclude whether the integrity is compromised. A dishonest FI
can take advantage of unavailability of logs for a few hours, but in the system the
logs are signed by the CSP when the day changes using the private key and also
kept on the Web, in which case such claims will remain an entertained. The
counterfeit or the duplicitous logs which cannot be inserted by the CSP or the FI
as per the Int3, Int6 properties. The hash of the fake logs will vary and will be
absent in the cuckoo filter created in the implemented system. This again can be
traced using the process flow shown in figure 7 and figure 8. The Int7 integrity
property supports the non-repudiation of PEEPL by the CSPs. As the logs are
already published earlier and also signed by the CSP using the private key. The
PEEPL can also be unlocked using the public key. The CSP cannot deny the
process and the logs.

Table 2: Conspiracy Model

Sr- | Is Trug 3stworthy Conditions Compromise Status Essential
No Security
Properties
Needed
CSP Client | FI
© (User) | (F)
)

1 Y Y Y CUF no conspiracy Not any

2 N Y Y CEUF discloses clients activity from the logs Con2

3 Y N Y CUF recover clients log after the PEEPL is Conl
published

4 Y Y N CUE eliminate, reorganize and insert Int4, Int5,Int6
counterfeit logs

5 Y N N CUE eliminate, reorganize, insert Conl, Int4,
counterfeit Int5,Int6
logs, and recover other cloud clients
log

6 N Y N cUE eliminate, reorganize, insert Conl,Intl, Int2,
counterfeit logs, disown published Int3,Int4,
PEEPL and disclose other cloud Int5,Int6,Int7
clients activity

7 N N Y CUF eliminate, reorganize, insert Conl,Con2,Intl,
counterfeit logs, disown published Int2, Int3,Int7
PEEPL and disclose other cloud
clients activity and
logs

8 N N N cUE eliminate, reorganize, insert Conl,Con2,Intl1,
counterfeit logs, disown published Int2, Int3,Int4,
PEEPL and Int5,Int6,Int7
disclose other cloud clients activity
and
logs

17

Hash (IDLE(N-3)) Hash (IDLE(N-1))

Hash (IDLE(N-2)) Hash (IDLE(N))

No

Figure 7: Process Flow Diagram for Log Confirmation and Integrity Assurance

Figure 8: Process Flow Diagram for Sequential Order of Log Confirmation

Results Observed

The prototype environment configuration is shown in the figure 3. A cuckoo filter
is created using the python library and logs which are encrypted and hashed, are
added to the cuckoo filter. The cuckoo filter in this trained. The implemented
system has used cuckoo filter for optimizing the database search operations. A
very few libraries exists for cuckoo filter [26 — 28] as of now because of its recent
creation. The Lookup (IDE) operation against the cuckoo filter can detect the
presence of the hash of the logs that is the PEEPL inserted by the Insert (IDLE)

18

procedure. The operations Insert (IDLE) and Lookup (IDLE) performed on the
cuckoo filter can either return successful or failure. The output behavior or the
output test condition of the cuckoo filter can be false positive as shown in figure 1
because of its probabilistic nature which is less than or equal to 3%.

When the FI and the EEE want to check the presence of the order of the hash of
the logs in case of a committed crime, they can be given an interface to check the
contents of the trained cuckoo filter. They can use the cuckoo filters created in
the implemented instead of database and if the order of logs i.e. the hash values
are present in the specified manner means the result is true positive. When the
crime is committed using the CSPs infrastructure, the integrity of the logs can be
proved in the court of law using the evidence for crime committed. This evidence
can be traced optimally fast from the CSPs infrastructure where the cuckoo filters
are built. For confirming the same, the database can also be referred. Bloom
filters are also created in the similar manner and compared with cuckoo filters.
The bloom filter and the cuckoo filter are the probabilistic data structures
discussed in section 4.

The graph in figure 9 shows that the PEEPL generation time is linear. The graph
in figure 10 shows that cuckoo filter is very efficient in integrity verification as
compared to database or bloom filter. The lookup operation performed on the
cuckoo filter gave a O(zero) false positive result. During the insertion operation a 0
(zero) false positive result was obtained. During verification process, the FI can
perform a set membership test on the cuckoo filter to verify the hash chain
process. This is avoiding the database which saves a lot of time. The table 3
shows the observed parameters. The results observed are specific to the executed
environment.

PEEPL Generation Graph

Figure 9: PEEPL Generation Graph

19

Table 3: Observed Parameters

#Sr- | Description Time Noted in Milliseconds
No (ms)
1 Key pair generation 17.659
2. Encryption time for a single Log 3.4029
3. Hashing time 0.0131
4. Encryption and Hashing 3.4160
S. Database search time for an existing Log | 4.380
6. Cuckoo Filter Look up time 0.060
7. Bloom Filter Look up time 0.250
Discussion

The previous experiments conducted by the authors of this paper stores the
records in the database [25]. The hash chain formation process is explained in
figure 5 remains the same for the current research. The database table for the
logs with the column names like ScrIP, DstIP etc. as specified in the figure 5 are
created using Mysql database and the logs are stored in the persistent database.
Pseudo Code for the earlier system designed and implemented is as below:

Pseudo for the Log Hash Chaining

1 | Timelnterval =Tm Time interval as per the policy

2 | L = Log from the Virtual instance V Logs captured using the Wireshark

3 | Userid From Nova database Nova database of Openstack

4 | Foreach log L do Till end of the day

S | SrcIP = Search_Pattern(SourcelP,L) Few elements are searched from the
Log

6 | DstIP = Search_Pattern(DestinationIP,L) Regular expressions are written in
python for the Search

7 | Ts= Search_Pattern(Timestamp,L)

8 | DstPort = Search_Pattern(Timestamp,L)

7 | Macadd = Search_Pattern (Macadd,L)

9 | EC = Concat(DstIP,DstPort,Userid, Ts,Macadd)

10 | ELE = Encrypt(EC) Encrypt using a standard Crypto

11 | HC = Hash(ELE, HCypey) Generate the Hash using standard
Hashing Algorithm, use the hash of
the previous log to form the Hash
chain

12 | Send the HC to IDLE

13 | If Timeofbackup == Tm then Regular backups are taken

14 | PEEPL = CSP.Signature(IDLE) Signed values are published

14 | Publish the evidences on the EvidencePublisher Publish the evidences on the Web

15 | If EOD then It’s the Epoch

16 | Sign the last log using the Private Key of the CSP

17 | Send the L, HC to IDLE

18 | End if

19 | End for

20

Pseudo for the evidence verification by the FI using the database

1 | L= Log(SrcIP,DstIP,Ts) FI gets Logs through
Investigation

2 | If L Exists in the Log Database of CSP then | Matches with the CSPs details

3 | FILU Publickey; Unkey PEEPL Public key provided by the CSP

4 | If CSP.PEEPL == EvidencePublisher.PEEPL Test Hash Chain for some
samples

S | Evidence is genuine and integrity maintained Hash values are equal ,integrity

of logs is intact

6 | Proceed for court of law for trials

7 | Else

8 | Evidence is compromised or wrong Hash values are not equal

9 | Endif

10 | If CSP’s Database is Empty or Compromised

11 | Invoke fine procedure by Law Suggested as per Law

12 | End if

Pseudo for the evidence verification by the FI using cuckoo filter

1 | L= Log(SrclIP,DstIP,Ts) FI gets Logs through
Investigation

2 | LE = Hash(L)

3 | For each log in L

4 | LE = Hash(L)

S | T = Lookup(LE) Lookup procedure for the
trained Cuckoo Filter is invoked

6 | If T is true then Test Hash Chain for some
samples

7 | Hash exists; evidence is not tampered; proceed | Hash matches ; Logs are

for court of law for trials genuine

8 | else Hash values are equal ,integrity
of logs is intact

9 | Hash does not exists; Evidence is tampered Hash values are not equal

10 | End if

11 | If CSP’s Database is Empty or Compromised | Hash values are not equal

12 | Invoke fine procedure by Law Suggested as per Law

13 | End if

Regular expressions are coded in python to extract the other significant elements
from the logs. After the process of chaining and hashing, the logs are added to
the database in the order in which the logs are generated. The hash chain is also
stored in order to ensure that the proper chain is formed. Searching a hash value
in the database is a very costly process. In the earlier system developed by the
authors the purpose of hash chaining is served and the integrity can also be
maintained, though the operations are very costly. The privacy and the
confidentiality is compromised as the table contents and logs can be seen by the
CSP’s employees [25]. The table contains the logs of the websites accessed and
other details of the users of the system which can be revealed easily to the CSP
and the employees. The evidences can be easily compromised in the database

21

thus compromising the confidentiality and integrity of the logs. The evidences can
be questionable in the court of law. The system implemented in this research
paper optimizes the costly operations as discussed above in the results observed
section 8 and also improves on the data privacy and confidentiality. The
contribution of the current research is improving the data privacy and proving the
integrity of logs using the cuckoo filters and bloom filters. The insert procedure
needs to be invoked when the logs are generated to train the cuckoo filter. The FI
can use the interface for the cuckoo filter designed using the above pseudo code.
Bloom filters are also employed in the similar manner. A slightest change in the
logs can be detected by the implemented system. The users of the system cannot
deny the logs generated for the cloud services used by them and disown them.

Conclusion

The cuckoo filters and bloom filters are employed for proving the integrity of logs.
The implemented system is employing the cuckoo filters for optimizing the
database operation which are very costly. For example, querying a database, a set
membership test can be done to see if the desired log is even in the database.
Cuckoo filters support strongly in proving the integrity of the logs. Cuckoo filters
are new and stable libraries for many languages simply don't exist. The results
observed in this paper shows that cuckoo filters are very promising in the forensic
area as compared to database and bloom filters. To execute a successful and
rapid forensics investigation in clouds cuckoo filters work at a faster pace as
compared to bloom filter. In the cloud domain there are issues related to volatile
logs, making the logs accessible to investigators, and also simultaneously
safeguard the confidentiality and integrity of the logs. Such issues are solved in
this paper. Also the PDS used are gaining a lot of importance in the domain of
large data sets. The proposed system implemented here preserves the
confidentiality of cloud clients. The EEE can verify the integrity of the logs using
the PEEPL and the hash chain of the logs which are in the trained cuckoo filter.
The prototype system uses Ubuntu 14.4 as the base operating system and the
system is implemented in python. The earlier system implemented was using
Mysql database [25]. The earlier system was slow as shown in the results. This
newly built system is fast and can aid the FI in proving the crime at a faster pace
and also aids in preserving the integrity and confidentiality of the logs. No user of
the system can deny the logs generated for the cloud services used by them and
disown them.

22

Log Integrity Verification Time

%
iy
z

20000

15000

10000

2401 010804

TTME(ms)

Figure 10: Log Integrity Verification Graph
Acknowledgements

The authors are thankful to the anonymous reviewers and the editors for their
suggestions. The authors are also thankful to the managers for quick and timely
responses. The authors also thank the staff members of LJK trust, Dr.
H.B.Bhadka of C.U.Shah University, Dr. Sameer Patel of PDPU, Dr. Manik lal Das
from DAIICT for their best co-operation, support and guidance.

References

Almorsy, M., Grundy, J., & Ibrahim, A. S. (2011, July). Collaboration-based cloud
computing security management framework. In 2011 IEEE 4th International
Conference on Cloud Computing (pp. 364-371). IEEE.

Almorsy, M., Grundy, J., & Ibrahim, A. S. (2012, June). Tossma: A tenant-
oriented saas security management architecture. In 2012 IEEE Fifth
International Conference on Cloud Computing (pp. 981-988). IEEE.

Almorsy, M., Grundy, J., & Mller, I. (2016). An analysis of the cloud computing
security problem. arXiv preprint arXiv:1609.01107.

Al-Shardan, M. M., & Ziani, D. (2015). Configuration as a service in multi-tenant
enterprise resource planning system. Lecture Notes on Software Engineering,
3(2), 95.

Ashalatha, R., & Agarkhed, J. (2016, March). Multi tenancy issues in cloud
computing for SaaS environment. In 2016 International Conference on Circuit,
Power and Computing Technologies (ICCPCT) (pp. 1-4). IEEE.

Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D., ... &
Fremantle, P. (2010, July). Multi-tenant SOA middleware for cloud computing.
In 2010 IEEE 3rd international conference on cloud computing (pp. 458-465).
IEEE.

23

Bakshi, K. (2011, March). Considerations for cloud data centers: Framework,
architecture and adoption. In 2011 Aerospace Conference (pp. 1-7). IEEE.

Behl, A., & Behl, K. (2012, October). An analysis of cloud computing security
issues. In 2012 world congress on information and communication technologies
(pp. 109-114). IEEE.

Bezemer, C. P., & Zaidman, A. (2010, September). Multi-tenant SaaS applications:
maintenance dream or nightmare?. In Proceedings of the Joint ERCIM
Workshop on Software Evolution (EVOL) and International Workshop on
Principles of Software Evolution (IWPSE) (pp. 88-92).

Brookbanks, M. D., Coffey, B. F., Dawson, C. J., Nellutla, T., Patterson, R. C., &
Seaman, J. W. (2011). U.S. Patent Application No. 12/630,079.

Hajibaba, M., & Gorgin, S. (2014). A review on modern distributed computing
paradigms: Cloud computing, jungle computing and fog computing. Journal of
computing and information technology, 22(2), 69-84.

Kriouile, H., & Asri, B. E. (2018). A rich-variant architecture for a user-aware
multi-tenant SaaS approach. arXiv preprint arXiv:1812.08253.

Mahmood, Z. (2011). Cloud computing for enterprise architectures: concepts,
principles and approaches. In Cloud computing for Enterprise architectures (pp.
3-19). Springer, London.

Malathi, M. (2011, April). Cloud computing concepts. In 2011 3rd International
Conference on Electronics Computer Technology (Vol. 6, pp. 236-239). IEEE.

McGrath, M. P., & Lamourine, M. A. (2015). U.S. Patent No. 9,058,198.
Washington, DC: U.S. Patent and Trademark Office.

Mishra, A., Mathur, R., Jain, S., & Rathore, J. S. (2013). Cloud computing
security. International Journal on Recent and Innovation Trends in Computing
and Communication, 1(1), 36-39.

Motahari-Nezhad, H. R., Stephenson, B., & Singhal, S. (2009). Outsourcing
business to cloud computing services: Opportunities and challenges. IEEE
Internet Computing, 10(4), 1-17.

Odun-Ayo, 1., Ananya, M., Agono, F., & Goddy-Worlu, R. (2018, July). Cloud
computing architecture: A critical analysis. In 2018 18th International
Conference on Computational Science and Applications (ICCSA) (pp. 1-7). IEEE.

Odun-Ayo, I., Misra, S., Abayomi-Alli, O., & Ajayi, O. (2017, December). Cloud
multi-tenancy: Issues and developments. In Companion Proceedings of thelOth
International Conference on Utility and Cloud Computing (pp. 209-214).

Povedano-Molina, J., Lopez-Vega, J. M., Lopez-Soler, J. M., Corradi, A., &
Foschini, L. (2013). DARGOS: A highly adaptable and scalable monitoring
architecture for multi-tenant Clouds. Future Generation Computer Systems,
29(8), 2041-2056.

Rimal, B. P., & Choi, E. (2012). A service oriented taxonomical spectrum, cloudy
challenges and opportunities of cloud computing. International Journal of
Communication Systems, 25(6), 796819.

Rimal, B. P., Choi, E., & Lumb, 1. (2009, August). A taxonomy and survey of cloud
computing systems. In 2009 Fifth International Joint Conference on INC, IMS
and IDC (pp. 44-51). leee.

Shue, D., Freedman, M. J., & Shaikh, A. (2012). Performance isolation and
fairness for multi-tenant cloud storage. In Presented as part of the 10th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
12) (pp. 349-362).

24

Takabi, H., Joshi, J. B., & Ahn, G. J. (2010). Security and privacy challenges in
cloud computing environments. IEEE Security & Privacy, 8(6), 24-31.

Tsai, W. T., Sun, X., & Balasooriya, J. (2010, April). Service-oriented cloud
computing architecture. In 2010 seventh international conference on
information technology: new generations (pp. 684689). IEEE.

Voorsluys, W., Broberg, J., & Buyya, R. (2011). Introduction to cloud computing.
Cloud computing: Principles and paradigms, 1-44.

Vuyyuru, M., Annapurna, P., Babu, K. G., & Ratnam, A. S. K. (2012). An overview
of cloud computing technology. International Journal of Soft Computing and
Engineering, 2(3), 244-247.

Willis, D., Dasgupta, A., & Banerjee, S. (2014, September). ParaDrop: a multi-
tenant platform to dynamically install third party services on wireless
gateways. In Proceedings of the 9th ACM workshop on Mobility in the evolving
internet architecture (pp. 43-48).

Wu, D., Rosen, D. W., & Schaefer, D. (2014). Cloud-based design and
manufacturing: status and promise. In Cloud-based design and manufacturing
(CBDM) (pp. 1-24). Springer, Cham.

Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015). Cloud-based design and
manufacturing: A new paradigm in digital manufacturing and design
innovation. Computer-Aided Design, 59, 1-14.

Youssef, A. E. (2012). Exploring cloud computing services and applications.
Journal of Emerging Trends in Computing and Information Sciences, 3(6), 838-
847.

