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Abstract---A scheme is given for optimizing the movement of the 

robotic arm with the help of AHP so that the minimum energy 

consumption criteria can be achieved. As compared to Direct 
Kinematics, Inverse Kinematics will evolve two solutions out of which 

the best-fit solution will be selected with the help of AHP and is kept 

in search space for future use. The importance of sustainable 
manufacturing has been widely discussed. The optimization of energy 

consumption in product manufacture has been deeply analyzed, 

mainly focusing on the energy directly absorbed by the manufacturing 

process. On the contrary, this paper focuses on the analysis and 
optimization of the energy consumption related to the robot arm, 

probably the most mathematically complex robot anyone could ever 

build, and we will present an optimized solution for the movement of a 
three-arm manipulator using the Analytical Hierarchy Process (AHP). 

 

Keywords---Robotic arm, Analytical Hierarchy Process (AHP), Energy 
consumption, Sustainable. 

 

 
Introduction  

 

Many industrial countries witnessed an increase in the prices of both electricity 

and fuel during the last decade. According to recent statistics one of the large 
consumers of energy is the manufacturing industry. The majority of the energy is 

usually consumed by robots used in the manufacturing industry. In addition, the 

optimal usage of energy in robots plays an important role in minimizing CO2 
emission in the production stage of a product’s lifecycle. During the last years, 

the rapid increase of the energy price together with strictly international and 

national policies has pointed out the problem of energy efficiency, moving 
companies’ awareness from the reduction of the production time to the 

identification of an optimal trade-off between production time and energy 

consumption [2]. The robotic arm is commonly used in industries. In many field 
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applications where technical support is required, manhandling is either 

dangerous or is not possible.   
 

In such situations, three or more arm manipulators are commonly used. They are 

of great demand to speed up the automation process. Three-link manipulators are 
the fundamental robotic arms according to [3], for many industrial processes, e.g. 

the robotized spot-welding assembly; the consumption can be cataloged as 

“process energy” or “auxiliary energy”. The process energy, generally representing 

the majority of the consumption, is the energy directly used in the manufacturing 
of the products, e.g. the assembly welding energy. The auxiliary energy is the 

energy required by the operations that allow the execution of the process, e.g. 

robotic energy consumption. Even if several papers cope with the reduction of the 
process energy [2], auxiliary energy plays a relevant role and deserves to be 

studied. According to [4], there is a need to optimize the movement for energy 

consumption and various mechanical and control related attributes like friction, 
settling time, etc., which will improve the performance. The total energy 

consumed by the robot is usually affected by the required torque on each joint 

and inertia tensors of each link.  
  

 
Fig 1. Shows the Energy Consumption of Different Sectors and Increase in Supply 

of Robots 
  

Genetic algorithms are often viewed as function optimizers, although the range of 

problems to which genetic algorithms have been applied is quite broad. An 
implementation of a genetic algorithm begins with a population of (typically 

random) chromosomes. These structures evaluate and allocate reproductive 

opportunities in such a way that those chromosomes, which represent a better 
solution to the target problem are given more chances to reproduce than those 

chromosomes which are poorer solutions [4]. Analytical Hierarchy Process is a 

pragmatic way of reaching the best solution from a given search space without 
modifying the solution. This method is intensively used for solving corporate 

problems related to finance, marketing, etc. AHP has proved itself to be one of the 

best available methods to find the ranks of fitness values based on the application 

objectives [4].  
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Problem Statement  

  

The paper focuses on robot energy consumption in pick-and-place tasks. A task 

consists of the grabbing or release of an object in a specific position, thus 
representing a constraint to the robot configuration during the task execution. As 

an example, the ABB -IRB140 industrial robot has been chosen.    

 
Consider 3 links of the robot with 350mm, 360mm, 380mm lengths respectively, 

which has 50 of freedom and has a carrying capacity of 5kg, with a weight of 98 

kg, power specification of 200-240 V AC ±10%, 50/60 Hz, 4.5 kVA; it can give 
accurate results within the range of 5-400C ambient temperature and 45-95 % 

(non-condensing) humidity and with a max. Reach of 810mm.  

  
Methodology  

  

The proposed approach is based on 4 steps, where, Inverse kinematics is applied 

on the 3 links to find link angles. For each link angle, we have obtained two 
solutions (step 1). AHP is applied for the different factors to obtain the fitness 

function (step 2). Three links each having two solutions in total gives six angles. 

These six angles are fed into GA such that they form different combinations. 
These combinations/solutions from the Genetic Algorithm, which generate the 

new population (step 3). Finding the optimized value from the previous step which 

fits the criteria (step 4) the block diagram of the system is shown below [4].  
  

 
Fig. 2. Robot's frame 
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Kinematics of the Manipulators   

  
In order to program the tool motion, we must first formulate the relationship 

between the joint variables, position, and orientation of the tool. This is called 

Kinematics Transformation. Kinematics can be done in two ways:  
1) Direct kinematics  

2) Inverse kinematics   

  

Direct kinematics  
 

A manipulator is composed of serial links that are affixed to each other revolute or 

prismatic joints from the base frame through the end-effectors. Calculating the 
position and orientation of the end-effectors in terms of the joint variables is 

called forward kinematics. In order to have forward kinematics for a robot 

mechanism in a systematic manner, one should use a suitable kinematics model. 
Denavit-Hartenberg's method that uses four parameters is the most common 

method for describing the robot kinematics. These parameters ai-1, αi-1, di, and 

θj are the link length, link twist, link offset, and joint angle, respectively. A 
coordinate frame is attached to each joint to determine D-H parameters. Zi axis of 

the coordinate frame is pointing along with the rotary or sliding direction of the 

joints [7].  

  
Inverse Kinematics  

 

The inverse kinematics problem of serial manipulators has been studied for many 
decades. It is needed in the control of manipulators. Solving the inverse 

kinematics is computationally expansive and generally takes a very long time in 

the real-time control of manipulators. Tasks to be performed by a manipulator are 
in the Cartesian space, whereas actuators work in joint space. Cartesian space 

includes orientation matrix and position vector. However, joint space is 

represented by joint angles. The conversion of the position and orientation of 
manipulator end-effectors from Cartesian space to joint space is called an inverse 

kinematics problem. There are two solutions approaches, [7]  

a. Geometric   

b. Algebraic used for deriving the inverse kinematics solution, analytically In 

this paper we are solving the Inverse kinematics using Geometric approach.  
  

System development  

  
Solving the inverse kinematics of the robot is an important step for calculating the 

inverse dynamics of the robot in the forthcoming steps. It is archived under the 

assumption that the first three joints are responsible for the end-effectors position 
and the last three are responsible for its orientation. With the given position and 

orientation of the target location, the position of the wrist is calculated. The 

previous assumption provides a simplification for the calculations therefore it is 

widely used for solving the inverse kinematics of the serial- chain manipulators. 
The calculations of link angles (θ1, θ2, θ3) are made geometrically. Requirements 

for manipulator having three-link and end effectors are [5]:  

a. Link and Actuated joint  

b. End effectors  



 

 

5 

c. Joint coordinates θ1, θ2, θ3   

d. Reference point  

e. End effectors coordinates x, y, ϕ   

f. Link lengths.  

  

Geometrical Equations  

  

x = l1 cosθ1 + l2 cos(θ1+θ2) + l3 cos(θ1+θ2+θ3)          -------- (1)  

y = l1 sinθ1 + l2 sin(θ1+θ2) + l3 sin(θ1+θ2+θ3)           -------- (2)  

Φ = θ1+ θ2+ θ3                                                            --------- (3)  

  

After rewriting and squaring and adding the equations, we will get one unknown 
θ1, in the form of P cosα + Q sinα + R = 0  

  

Where,  
  

P = - 2l1x´  

Q = - 2l1y´ α = θ  

R = x´2 +y´2+l12-l2 2  

  
Now finding the θ1, θ2, θ3  

  

 

  

    

θ3 = ϕ – θ1 - θ2.  

  
Now we choose to move the end effectors from reference point (0,0,0) to the 

destination point (63,36,32.40).  

From the above values, solve using the inverse kinematics equation. We get:  
   

θ 1 = 146.991°,  

        -80.953°  
  

θ 2 = -62.987°,  

         110.593°  
  

θ 3 = -51.911°,  

        2.7565°  

  
From the above six solutions, we arrange them in eight combinations.  
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Genetic Algorithm   

  
A Genetic algorithm (GA) is a method for solving both constrained and 

unconstrained optimization problems based on a natural selection process that 

mimics biological evolution. The algorithm repeatedly modifies a population of 
individual solutions. At each step, the genetic algorithm randomly selects 

individuals from the current population and uses them as parents to produce the 

children for the next generation. Over successive generations, the population 

"evolves" toward an optimal solution.   
  

Analytical Hierarchy Process (AHP)   

  
The analytic hierarchy process is a process that Structure a problem as a 

hierarchy or as a system, elicit judgments that reflect ideas, feelings, and 

emotions, represent those judgments with meaningful numbers, synthesize 
results, and analyse sensitivity to changes in judgment. [4]  

 

The purpose of AHP is to structure complexity in gradual steps from the large to 
the small, or the general to the particular so that we can relate them with greater 

accuracy according to our understanding. Because experience is too vast to lay it 

out in a single network structure, we are satisfied with piecemeal decompositions 

and with occasional linkages of them.   
 

The purpose is to improve our awareness by the richer synthesis of our knowledge 

and intuition. AHP is a learning tool. It is not a means to discover the TRUTH 
because the truth is relative and changing. In the AHP, next to setting up a 

STRUCTURE to represent a problem, the reciprocal property is the most 

fundamental aspect for creating a SCALE. [4]  
 

A hierarchy is an efficient way to organize a complex system, and functionally, for 

controlling and passing information down the system. Unstructured problems are 
best grappled within the systematic framework of the hierarchy or a feedback 

network. In our case Fitness of each chromosome depends upon many factors like 

acceleration, jerk, the weight of the links, Forces acting on the links, Friction, etc.,  

 
We will consider four mains factors on which the fitness function will be 

calculated by applying the Analytical Hierarchical Process. These four main 

factors are Movement (F1), Friction (F2), Least Settling Time (Min. Vibration) (F3), 
Forces acting on the links (F4). First, we will decide the importance and value of 

these four attributes for each angle separately. Table 1 for angle θ1 which is the 

angle moved by link-1 Similarly Table 2 and Table 3 for the angles θ2 & θ3.  
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Table 2 

Importance and Value of the Four Attribute For Θ1 

  

 Factor  Importance    Value (total 1)  

F1  High  0.4  

 F2   Low  0.1  

 F3   Medium  0.2  

 F4   Medium  0.3  

  

Max. Eigen value λ1 = 4.23 C.i = 0.07 (≤ 0.1).  
  

Table 3 

Importance and Value of the Four Attribute For Θ2 

  

Factor  Importance    Value (total 1)  

 F1   Medium   0.2  

 F2   High   0.4  

 F3   Low   0.1  

 F4   Medium   0.3  

  
Max. Eigen value λ2 = 4.25 C.i = 0.08 (≤ 0.1).  

  

Table 4 
Importance and Value of the Four Attribute For Θ3 

  

 Factor   Importance    Value (total 1)  

 F1   Medium   0.2  

 F2   Medium   0.2  

 F3   High   0.4  

 F4   Medium   0.2  

  

Max. Eigen value λ3 = 4.24 C.i = 0.08 (≤ 0.1).  
  
Now, we have the Eigen values of the matrices corresponding to the three angles, 

thus it is possible to construct the Objective function or Fitness function. The 

Fitness function is shown in the equation below:  

  
ƒ(x) = θ1 × λ + θ2 × λ + θ3 × λ  

  

Results and Discussion  
  

By considering the above flow charts we fed the fitness function into GA by giving 

the lower and upper bounds for each variable that affect the energy consumption 
of the robot. In this study, we assessed four components viz., Movement, Friction, 

Least Settling Time, and Forces acting on the links. In our assumption, these four 

factors are very important, play an important role to optimize the energy 
consumption. Follows optimized results prove the same. When we iterated the 

function we obtained the fitness value asset of combination. The graphs for the 

above results, which show the behaviour, follow as now we obtained the values 
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from GA; we also want to calculate result from AHP to compare both the result, so 

that we can predict the best method to find the optimized solution. The inverse 
kinematics had yielded link angles based on a strict mathematical model. The 

mathematical model fails to accommodate the effects of various internal and 

external parameters concerning the three-link robotic arm.   
 

The angles so obtained from inverse kinematics were more theoretical in nature 

and less pragmatic. GA software is used to get real solutions due to its high 

successive rates. The success rate of GA depends upon crossover and mutation. 
The main reason to use a genetic algorithm is there are multiple local optima, the 

numbers of parameters are very large, and the objective function is noisy or 

stochastic. AHP is a pragmatic method of mathematically ranking the various 
available alternatives (which get evolve during the execution of GA in various test 

runs/iterations) along with approximate reasoning. In this paper, we selected AHP 

in place of conventional techniques like Roulette Wheel, Rank Selection to reduce 
the ambiguity of the equations. However, there are innumerable optimization 

methods, the above factors driven us to use these techniques, which meet our 

requirement. By solving using GA we got the following graphs.  
  

 
Fig. 3. Best fitness graph 
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Fig.4.Best Individual 

  

Conclusion  
  

In this paper, we have focused on the analysis and optimization of the energy 

consumption related to the robot arm. We used the GA method and the AHP 
method for optimization. We have used GA and AHP separately and found the 

best fitness and best individual graphs. But we get the best-optimized solution by 

using GA and AHP together.  
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