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Abstract---To speed up the convergence rate in solving the linear 
system iteratively, we construct the corresponding preconditioned 

linear system. Then we formulate and implement the Preconditioned 

GaussSeidel (PGS) iterative method for solving the generated linear 
system. One example of the problem is presented to illustrate the 

effectiveness of the PGS method. The numerical results of this study 

show that the proposed iterative method is superior to the basic GS 

iterative method. In this paper, we deal with the application of an 
unconditionally implicit finite difference approximation equation of the 

one-dimensional linear space-fractional diffusion equations via the 

Caputo’s space-fractional derivative. Based on this implicit 
approximation equation, the corresponding linear system can be 

generated in which its coefficient matrix is large scale and sparse.  
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Introduction  

 

Based on previous studies in [1, 2, 3, and 4] many successful mathematical 

models, which are based on fractional partial derivative equations (FPDEs), have 
been developed. Following that, there are several methods used to solve these 

models. For instance, we have a transform method [5], which is used to obtain 

analytical and/or numerical solutions of the fractional diffusion equations (FDE). 
Other than this method, other researchers have proposed finite difference 

methods such as explicit and implicit [6, 7, and 8]. Also, it is pointed out that the 

explicit methods are conditionally stable. Therefore, we discredited the 
spacefractional diffusion equation via the implicit finite difference discretization 

scheme and Caputo’s fractional partial derivative of order in order to derive a 

Caputo’s implicit finite difference approximation equation. This approximation 
equation leads to a tridiagonal linear system.   

 

Due to the properties of the coefficient matrix of the linear system which is a 

sparse and large scale, iterative methods are the alternative option for efficient 
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solutions. As far as iterative methods are concerned, it can be observed that many 

researchers such as Ghuang-hui [9], Young [10], Hackbusch [11], and Saad [12] 

have proposed and discussed several families of iterative methods. In addition to 

that, the concept of block iteration has also been introduced by Evans [13], 
Ibrahim and Abdullah [14], Evans and Yousif [15] to demonstrate the efficiency of 

its computation cost. Among the existing iterative methods, the preconditioned 

iterative methods (Ghuang-Hui [9], Zhao [16], Hoang-hao [17], Gunawardena [18], 
Saad [12]) have been widely accepted to be one of the efficient methods for solving 

linear systems. Because of the advantages of these iterative methods, the aim of 

this paper is to construct and investigate the effectiveness of the Preconditioned 
Gauss-Seidel (PGS) iterative method for solving space-fractional parabolic partial 

differential equations  (SPPDE’s) based on the Caputo’s implicit finite difference 

approximation equation. To investigate the effectiveness of the PGS method, we 
also implement the Gauss-Seidel (GS) iterative methods being used as a control 

method. To demonstrate the effectiveness of the PGS method, let space-fractional 

parabolic partial differential equation (SPPDE’s) be defined as  

 

 
  

With   initial condition     and  

Boundary conditions   

  
The outline of this paper is organized as follows: In Section 2 and 3, an 

approximate the formula of the Caputo’s fractional derivative operator and 

numerical procedure for solving space- fractional diffusion equation (1) by means 
of the implicit finite difference method is given. In Section 4, the formulation of 

the PGS iterative method is introduced. Section 5 shows numerical example and 

its results and conclusion is given in section 6.  
  

Preliminaries  

  
Before constructing the linear systems, some definitions that can be applied for 

fractional derivative theory need to develop the approximation equation of 

problem (1) in  

Definition 1 [5] The Riemann-Liouville fractional integral operator, J of order-  is 
defined as  
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Derivation of Caputo’s Implicit Finite Difference Approximation  

  

 
And  
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Formulation of Preconditioned Gauss-Seidel Iterative Method  

  

In relation to the tridiagonal linear system in Eq. (7), it is clear that the 
characteristics of its coefficient matrix are large scale and sparse. As mentioned in 

Section 1, many researchers have discussed various iterative methods such as 

Ghuang-Hui [9], Zhao [16], Hoang-hao [17], Gunawardena [18], Young [10], 
Hackbusch [11], Saad [12], Yousif and Evans [15]. To obtain numerical solutions 

of the tridiagonal linear system (8), we consider the Preconditioned Gauss-Seidel 

(PGS) iterative method [9, 16, 17, 18], which is the most known and widely used 
for solving any linear systems. Before applying the PGS iterative method, we need 

to transform the original linear system (7) into the preconditioned linear system  
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and the matrix I is an identical matrix. To formulate PGS method, let the 

coefficient matrix A* in (7) be expressed as summation of the three matrices  

 

 
Where   

14           
D, L and V are diagonal, lower triangular and upper triangular matrices 

respectively. By using Eq. (9) and (11), the formulation of PGS iterative method 

can be defined generally as [9, 16, 17, 18, and 19]  

 

 
        

  
Numerical Example  

  

  
  

Conclusion  

  
In order to get the numerical solution of the space-fractional diffusion problems, 

the paper presents the derivation of the Caputo’s implicit finite difference 

approximation equations in which this approximation equation leads to a linear 
system. From the observation of all experimental results by imposing the GS and 

PGS iterative methods, it is obvious at the number of iterations has declined 

approximately by 41.3082.45% corresponds to the PGS iterative method 

compared with the GS method. Again in terms of execution time, implementations 
of the PGS method are much faster about 51.18-92.43% than the GS method. It 

means that the PGS method requires the least amount for the number of 

iterations and computational time as compared with GS iterative methods. Based 
on the accuracy of both iterative methods, it can be concluded that their 

numerical solutions are in good agreement.  
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