Most recent improvements in CMOS innovation have prompted the execution of high recurrence quadrature generators

Authors

  • Herbert Adelbert Humboldt University of Berlin, Berlin, Germany

Keywords:

90nm CMOS Technology, Rectification circuit, Amendment, Analog feedback

Abstract

The proposed circuit utilizes Phase locked loop type of architecture for Quadrature mistake amendment and we are additionally going to perceive how Duty cycle assumes a significant job in our project. The analog feedback loop is intended for quadrature error correction. The issues identified with high frequency have been discussed. This total task is structured in 90nm CMOS Technology. This paper primarily centers on the structure of closed loop analog in phase and quadrature phase rectification circuit for digital clocks.

Downloads

Download data is not yet available.

References

Ali, A., & Hamouda, W. (2016). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE communications surveys & tutorials, 19(2), 1277-1304.

Anders, S., Blamire, M. G., Buchholz, F. I., Crété, D. G., Cristiano, R., Febvre, P., ... & Kunert, J. (2010).

European roadmap on superconductive electronics–status and perspectives. Physica C: Superconductivity, 470(23-24), 2079-2126.

Bagheri, R., Mirzaei, A., Chehrazi, S., Heidari, M. E., Lee, M., Mikhemar, M., ... & Abidi, A. A. (2006). An 800-MHz–6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE Journal of SolidState Circuits, 41(12), 2860-2876.

Bhatnagar, A. (2005). Low jitter clocking of CMOS electronics using mode-locked lasers (Doctoral dissertation, Stanford University).

Cassia, M. (2004). Low power/low voltage techniques for analog CMOS circuits.

Cavaliere, F., Prati, E., Poti, L., Muhammad, I., & Catuogno, T. (2020). Secure quantum communication technologies and systems: from labs to markets. Quantum Reports, 2(1), 80-106.

Chang, C. H., Zheng, Y., & Zhang, L. (2017). A retrospective and a look forward: Fifteen years of physical unclonable function advancement. IEEE Circuits and Systems Magazine, 17(3), 32-62.

García-Hernando, A. B., Martínez-Ortega, J. F., López-Navarro, J. M., Prayati, A., & Redondo-López, L. (Eds.). (2008). Problem solving for wireless sensor networks. Springer Science & Business Media.

Huang, L. (2016). Leveraging the Advantages of Large-Area Electronics and CMOS ICs in Hybrid Systems and Circuits (Doctoral dissertation, Princeton University).

Kalpana, G., Krishnamoorthy, R., & Kalaivaani, P. T. (2020). Design and implementation of low-power CMOS biosignal amplifier for active electrode in biomedical application using subthreshold biasing strategy. International Journal of Wavelets, Multiresolution and Information Processing, 18(01), 1941017.

Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. John Wiley & Sons.

Kumar, G. S., & Saminadan, V. (2019). Fuzzy logic based Truly Random number generator for highspeed BIST applications. Microprocessors and Microsystems, 69, 188-197.

Machado, G. A. (Ed.). (1996). Low-power HF microelectronics: a unified approach (Vol. 8). IET.

McCorkle, J. W. (2012). U.S. Patent No. 8,311,074. Washington, DC: U.S. Patent and Trademark Office.

McCorkle, J. W. (2014). U.S. Patent No. 8,743,927. Washington, DC: U.S. Patent and Trademark Office.

McDermott, R., Vavilov, M. G., Plourde, B. L. T., Wilhelm, F. K., Liebermann, P. J., Mukhanov, O. A., & Ohki, T. A. (2018). Quantum–classical interface based on single flux quantum digital logic. Quantum science and technology, 3(2), 024004.

Moscrip, W. M. (1994). U.S. Patent No. 5,329,768. Washington, DC: U.S. Patent and Trademark Office.

Naranjo-Hernández, D., Reina-Tosina, J., & Min, M. (2019). Fundamentals, recent advances, and future challenges in bioimpedance devices for healthcare applications. Journal of Sensors, 2019.

Selmic, R. R., Phoha, V. V., & Serwadda, A. (2016). Wireless Sensor Networks. Springer International Publishing AG.

Staszewski, R. B., & Balsara, P. T. (2006). All-digital frequency synthesizer in deep-submicron CMOS. John Wiley & Sons.

Talukdar, A. K. (2010). Mobile Computing, 2E. Tata McGraw-Hill Education.

Van Der Tang, J., Kasperkovitz, D., & Van Roermund, A. H. (2003). High-frequency oscillator design for integrated transceivers (Vol. 748). Springer Science & Business Media.

Wassi-Leupi, G. (2012). Online scheduling for real-time multitasking on reconfigurable hardware devices (Doctoral dissertation).

Zalesskiy, S. S., Danieli, E., Blumich, B., & Ananikov, V. P. (2014). Miniaturization of NMR systems:

Desktop spectrometers, microcoil spectroscopy, and “NMR on a chip” for chemistry, biochemistry, and industry. Chemical reviews, 114(11), 5641-5694.

Zhang, Y., Wang, S., & Ji, G. (2015). A comprehensive survey on particle swarm optimization algorithm and its applications. Mathematical Problems in Engineering, 2015.

Downloads

Published

2022-11-18

How to Cite

Adelbert, H. (2022). Most recent improvements in CMOS innovation have prompted the execution of high recurrence quadrature generators. Tennessee Research International of Social Sciences, 4(2), 1–12. Retrieved from https://triss.org/index.php/journal/article/view/15

Issue

Section

Research Articles